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Abstract

National Statistical Institutes routinely release Microdata File
for Research i.e. individual data which have been modified in
order to minimise possible disclosure of confidential information. An
assessment of the risk of disclosure is always advisable before releasing
the data. In this paper we show the importance and flexibility of an
individual risk of disclosure in contrast with an aggregated measure
of the risk for the whole microdata file. Moreover, when discrete key
variables are present, we propose a new method for estimating the risk
of each single unit in the file to be released quantifying the probability
of correctly linking each unit to an individual in the population. We
formalise the relationship between frequencies in the sample and those
in the population by mean of sampling weights, showing the impact
that survey design has on disclosure limitation. An assessment of
the proposed method is provided by comparing our estimates of the
individual risk with those obtained using demographic information.
The results of such a comparison based on the Italian Household
Expenditure Survey are presented.
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Research; Discrete key variables; Negative Binomial Distribution.

1 Introduction

The growing demand by the scientific community to allow statistical analysis
to be made on individual data has fostered research into the field of statistical
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disclosure limitation (Doyle et al., 2001, and Domingo-Ferrer, 2002). It has
also led recently to a crucial change in European legislation with the adoption
of Commission Regulation no. 831/2002 on “access to confidential data for
scientific purposes”. This law would allow the creation of “anonymised
microdata”, essentially what is known as Microdata File for Research (MFR),
at European level for some strategic surveys.

Any microdata file to be released will contain a set of variables for each
unit ¢: the key variables that may allow identification of an individual and
are accessible to the public, the sensitive variables that are confidential and
the final weight w; indicating the number of individuals in the population
that are represented by unit ¢ (Deville and Sarndall, 1992). We focus our
attention on discrete key variables; this is the common situation in household
surveys and population censuses.

This paper is motivated by the production of MFR stemming from social
surveys (the file to be released is, therefore, a sample from the population
of interest). This involves both the development of techniques to protect
the data and the definition (and evaluation) of a measure to quantify the
probability that a user has to disclose individual information; this paper
concentrates on the latter. The individual disclosure risk we provide uses
sampling design information. It is therefore particularly suited for social
surveys carried out by National Statistical Institutes (NSIs) that put extreme
care in the design of their surveys. Our aim in this paper is to present a
methodology that can be used by NSIs to routinely produce MFRs. To this
end such methodology has been included in the software u-Argus, a software
package for producing safe microdata files, discussed by Willenborg and
Hundepool (1999). Currently the software, a product of the ‘Computational
Aspect of Statistical Confidentiality” project founded by the European Union
is under testing for its final release at the end of 2003. More information on
the project is available from the Web page http://neon.vb.cbs.nl/casc/

p-Argus includes both the risk assessment and the protection of microdata.
To do this it allows to estimate the risk as described in this paper for each
unit in the microdata file to be released. Moreover, it applies global recoding
in an interactive way and, for all those units presenting a risk higher than a
predefined threshold, it performs local suppression in order to produce a safe
microdata file.

In this paper we adopt the re-identification disclosure definition
(Willenborg and de Waal, 2001 ). This occurs when an individual unit is
identified (i.e. a one-to-one relationship between a unit in the released file
and a target individual in the population is established with some degree of
confidence) and then, as a consequence, the user is able to deduce the value
of sensitive variables for such individual. In Section 1.1 we will specify the



way in which an identification can be performed.

1.1 Disclosure scenario

To develop a quantitative model for measuring individual risk of disclosure
we need first of all to make some assumptions on the behaviour of the person
who attempts the identification, therein called the intruder, and also define
what we mean with the term identification.

As far as the intruder behaviour is concerned, we assume that:

-the intruder has an external data base or public register available that
contains identifiers (for example names and addresses of individuals) and key
variables;

-no measurement error in the value of the key variables occurred;

-the intruder tries to identify the unit ¢ in the sample comparing the
observed combination of categories of the key variables for such unit in the
released sample with the same combinations for individuals ¢* on his/her
register.

As far as the term identification is concerned, we observe an identification
of a unit 7 in the released sample when two conditions are met. First this unit
is linked, through the values observed on the key variables, to an individual
1* contained in the register available to the intruder and, second, i* is the
individual of the population from which the unit ¢ is derived. If only one
individual in the register and one unit in the released sample present the
same categories of the key variables a one-to-one relationship occurs. In
this case if the external data base covers the whole population the intruder
identifies the individual. For those individuals for whom it is not possible
to find a one to one relationship between the categories of the key variables
in the two data-sets, the link will be based on probabilistic reasoning as it
will be discussed in Section 3. As a consequence, even if the external register
covers the whole population, the intruder is not certain of identifying the
individual. The previous remark shows how the dimension of the external
register is crucial. The worst situation for the NSI releasing the sample occurs
when such external register covers the whole population. In fact, only in this
case the intruder can be sure of identifying some individuals (the one-to-
one relationships) and, in general, he has the highest chance of observing an
identification. Therefore, to consider the worst situation, in what follow we
assume that the external register covers the whole population.



1.2 Reasons for an individual risk of disclosure and
outline of the paper

Broadly speaking there are two different approaches to microdata risk
assessment: a global approach and an individual approach. The former
provides a single figure for the whole microdata file to be released whereas
the latter produces a risk for some (or all) units in the file to be released.
The global risk approach mainly concentrates on unique cases i.e. units
presenting unique combination of scores on the key variables. The use of
these frequencies to assess the risk of disclosure is a common practice in
many NSIs. This practice is based on the assumption that only population
uniques can be identified and on the evidence that a population unique is
necessarily a sample unique. However, as the contrary is not always true,
this approach may lead to an over protection of the microdata file. In general
the global approach develops models for estimating the expected number of
population uniques given the sample uniques. Recent examples of the use of
this approach can be found in Fienberg and Makov (2001), Hoshino (2001),
Samuels (1998) and references therein.

From the point of view of information loss, a global approach leads to
the application of protection techniques that are wvariable driven, such as
global recoding: Willenborg and de Waal, (2001). An individual approach,
on the contrary, allows for unit driven protection methods, such as local
suppression: Willenborg and de Waal, (2001). Unit driven methods, being
selective i.e. applying only to those units presenting a risk higher than a
predefined threshold, result in limited information loss.

From the point of view of the level of safety in the released file the
limitation of the global approach stands in treating all units presenting
the same frequency with respect to the key variables as exchangeable thus
ignoring different combinations of scores on those variables. However, such
frequencies are not all alike; Fienberg and Makov (2001), in a contingency
table view of the problem, recall how these may correspond to cells with very
different underlying probabilities. The individual risk approach tries to find
ways to include these differences into the disclosure risk. Skinner and Holmes
(1998) and Fienberg and Makov (1998) express such differences in terms of
log-linear models for contingency tables. Skinner and Elliot (2001) propose a
new measure of disclosure risk as the probability that a unique match between
a microdata record and a population unit is correct. In all these approaches,
a risk is estimated only for units presenting unique combinations of score on
the key variables. In this paper we provide a risk of disclosure for each unit
in the microdata file to be released using sampling design information.

In Section 2 we outline the definition of an individual disclosure risk and



in Section 3 we present an estimation method of the proposed risk based
on sampling information. In Section 4 we appraise the new method on data
from the Italian Household Consumption survey. We end the paper by briefly
presenting our conclusion in Section 5.

2 Individual Disclosure Risk

Let s be the observed sample of size n selected from a finite population
of N individuals according to a design D. Our aim is to release this
sample protecting the confidentiality of individual respondents. To reach this
aim we define a model to assess the possibility of disclosure of confidential
information for each unit in this sample and allow the protection of those
units presenting a risk higher than a predefined threshold.

For each unit ¢ we define the disclosure risk, r;, as the probability of
identifying such unit given the information contained in the observed sample.
This is the probability of linking unit ¢ in the sample to individual ¢* in the
register given the observed sample:

r; = Pr(unit i is linked to the individual i* | s)

where ¢* is the individual from whom the unit 7 is derived.

In order to simplify notation, in what follow let L; be the event “unit
¢ is linked to individual ¢* where ¢* is the individual from whom the unit ¢
derived”, so we have: r; = Pr(L; | s).

Note that the disclosure risk is defined only for units in the sample to be
released as an identification can not take place otherwise. Moreover, units in
the sample who share the same combination of categories of the key variables
are identical for the intruder in terms of uncertainty to make an identification.

Hence we can restrict the analysis on each of the £ = 1,..., K domains
defined by all the possible combinations of categories of key variables. For
a particular unit ¢ in the sample to be released let k(i) be the domain it
belongs to; then the risk of each unit in the domain k(7) is equal to the risk
of the unit 7. In what follow, we denote with 7 ;) the risk of each unit in the
domain k(i), and ry) = r;. The aim is, thus, to estimate the quantity r; for
each unit 7 in the sample.

3 Estimating the Individual Disclosure Risk

Let fi and F}, be, respectively, the number of units in the released sample
and the number of individuals in the population in the k-th domain; Fj is



unknown for each k. In the sample to be released only a subset of the total
number K of domains will be observed and only this subset, for whom f; > 0,
is of interest to the disclosure risk estimation problem.

The information given by the sample for the identification of unit ¢
consists of the frequency fy;). Hence we can write r; as:

ri =@y = P(Li | 8) = P(Li | f@))-
Such conditional probability can be express as:

iy = Pr(Li | fewy) = Pr(Li| Fray =1, fuw) Pr(Fray = 1| fs) + (1)
Pr(L; | Fugy = 2, frw) Pr(Frey = 2| fog)) + - - -

= Y Pr(Li| Fip) = h fuw) Pr(Fug = | frp)
h2 fi()

other terms in the summation disappearing because of the assumption
of no measurement errors which implies Fy; > fr@). To evaluate (1)
some distributional assumptions on the unknown parameter Fy; given the
observed frequency fi(;) are necessary. A possible solution is to estimate a
loglinear model for the multi-way table f(;y and then compute the probability
of Fi; either directly, see Skinner and Holmes (1998), or using the estimated
model for the imputation of nonsampled individuals, see Fienberg and Makov
(1998). The former approach is attractively distributional free, although
our experience is that its practical application is made difficult by the time
required and the loss of numerical accuracy when estimating models with
more than 1000 domains (10% of which has structural or sampling frequency
equal to zero). To avoid such problems we use the sampling design to perform
a direct estimation of the risk. Let us consider Pr(L; | Fi) = R, fru)). When
the external register covers the whole population, if unit ¢ in the sample is
unique in the population then Pr(L; | Fru) = 1, fiu)) = 1. If two individuals
i* and 7' belong to the same domain k(i) then the intruder performing a
probabilistic linkage obtains Pr(L; | Fruy = 2, fuw) = % If the same
probabilistic reasoning is applied to higher values of Fj;), then equation
(1) can be written as:

1
ey = Y 7 Pr(Fie = 1| fiw)- 2)
h2 fr(s

In order to simplify the notation in what follows we omit the subscript i.
As far as the factor Pr(Fy = h | fx) is concerned the idea is to consider
Fy | fr as a random variable distributed according to a negative binomial



distribution with f; successes and probability of success py, see Skinner et
al. (1994) and Bethlehem et al. (1989). Then,

h—1 _
Pr(szhlfmz(fk_l )pi’“(l—mh e h=1,2,...

where h > f, and f, > 0. This superpopulation approach is based on
the assumption that having observed fi; successes, where a success is a
selection with probability py of an individual from Fj, the allocation scheme
can be described by an inverse binomial sampling. Therefore in equation
(2) we recognise the negative moment of order 1 of the negative binomial
distribution: 7, =E(F; ' | fi). From Cressie et al. (1981), E(F, ' | fi) =
Io° Mg, 5, (—t)dt where Mp, s, is the moment generating function of Fj, | fi.
The substitution of the moment generating function of the negative binomial

distribution leads to:
fr
—t
r—/{ Pr exp( )}dt (3)
1 — gy exp(—t)

where ¢ = 1 — pi. The transformation y = {1 — grexp(—t)}~" in the

integral (3) gives:
Ik
- — 1)1
= (p) [ (4)

Ak Y

which is a monotonically increasing function in p; and monotonically
decreasing in f; and Fy; see Figure 1 and Figure 2.

To estimate the risk we need to estimate the parameter p, for each
domain k. Our idea is to make use of the sampling framework commonly
employed by NSIs to make inference from samples to populations. In fact,
to get accurate and efficient estimates of the phenomenon under study NSIs
adopt complex sampling design for their surveys, for example multistage and
stratified. We believe that such an effort can be also useful for the purpose
of estimating the individual disclosure risk. To do this, in the maximum
likelihood superpopulation estimator of py, pirEf = 1’;—2, we introduce the
information given by the sample through the design D. Such information
can be summarised by the Horvitz-Thompson estimator of Fj:

i k(i)=k
where w; is the final sampling weight of unit ¢ in domain k. Finally, we

obtain the design based estimator of p, as:

~Des fk
e (6)
g Dic k(i)=k Wi
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Figure 1: Risk of disclosure as function of the probability of selection pj for
different values of the observed frequencies fy.

3.1 Factors Influencing the Risk

The methodology we propose can accommodate factors influencing the risk
and that do not depend on released data. This is true, for example, for
the degree of coverage of the register, for the quality of the data as a
function of the time lag between the conduction of the survey and the data
release. In particular, given that these additional factors relate to events
that are independent from each other, we can formalise the probability
of identification of individual ¢ as the product of the probabilities of each
factor. For example, let dj;) be a quality parameter, ey be the probability
of the unit to be included in the external file (which depends usually on
the availability of public registers and on their degree of coverage of the
population) and #;) be the probability of an attempt of identifying unit i.
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Figure 2: Risk of disclosure as function of the observed frequencies f; for
different sizes of subpopulation Fj.

Then, the final risk can be written as:
Pr(i) = i) €xi) (i) Tk

where 74, is the value of 7, when estimated through the use of pP¢*. Of course
each of these parameters can vary across units or groups of units. As a final
remark, notice that in this formalisation 7, is the only parameter depending
on released data and any additional information has to be known a priori.
This approach can be thus considered in a Bayesian framework (Fienberg,
Makov and Sanil, 1997, Duncan and Lambert, 1986) where 7 plays the role
of the likelihood.

4 Case Study Based on Italia Household
Consumption Survey

In this section we present the application of the proposed methodology to
the Italian Household Consumption Survey (HCS) relative to the year 1997
in order to assess the methodology main characteristics.

The HCS is a survey based on a two stage sample design in which
the primary sampling units are the municipalities and the secondary



sampling units are the households. = The municipalities are stratified
by size (population) and NUTS3 (Nomenclature of Statistical Territorial
Units) geographical code (provinces). The households are selected
independently without replacement and with equal probability from the
sampled municipalities. =~ The survey provides household consumption
estimates significant at regional (NUTS2) level.

The survey data analysed comprises 64,000 units (22,363 households).

The final sampling weights w; are evaluated using a calibration estimator
(see Devil and Sarndal, 1992). They are calculated solving a minimum
constraint problem where the constraints are defined by the equality between
the survey estimates of some population totals and the corresponding known
population quantities. The HCS constraints are relative to the known
distribution of sex by age in each region, where the age is recoded in four
classes (0-14, 15-29, 30-59, 60-100).

To assess the design based estimation approach we compare the values
of the estimates of the individual risk using the design based estimator (6),
with estimates of the individual risk using demographic information: pPem =
fi/FPem where EPe™ is the value of the Italian population relative to
the k-th domain as it is calculated by Istat in the context of demographic
analysis of Italian Population (Istat 2000). Such estimates are calculated
using administrative sources. This comparison investigates whether sampling
weights, designed to estimate quantities inherent to a particular survey, can
be adopted to solve the individual risk estimation problem.

For this comparison we use two overlapping sets of key variables. The first
set contains sex (2 categories), age (99 categories) and region (20 categories)
while the second set comprises also the variable marital status (6 categories).
Notice that all the key variables in the first set appear as constraints in the
calibration estimator whereas, in the second set, marital status is not present
in the design estimator constraints.

In Figure 3 we plot, for the first set of key variables, the values of the
risk obtained by the design based estimates against the values of the risk
evaluated through demographic estimates. Units lying on the diagonal line
share the same value of the risk. We see that there is a high correlation
between the two sets of risk values. As expected, large values of the risk
show higher variability than small values.

As already mentioned before, units showing a value of the risk higher than
a predefined threshold « undergo a protection technique (global recoding,
local suppression etc.). In Figure 3 we plot a possible value for such a
threshold. Taking into account the values of the factors influencing the risk
for this survey commonly used at ISTAT, such threshold corresponds to the
probability of identification a unit equal to one over 40000.
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Figure 3: Risk using model based estimates and the demographic estimates
on key variables sex, age and region; HCS data. A logarithmic scale is used.
Units lying on the diagonal line share the same value of the risk. The dashed
lines indicate a possible value for the threshold.

As it is evident from Figure 3 there is no bias in the behaviour of the
model based estimates. However, two types of errors can occur: the first
involves information loss, the second the level of safety of the released data.
In fact, when a design based estimate of the risk is above the threshold but
the corresponding demographic estimate isn’t, then we may overprotect the
data to be released applying local suppression to the corresponding unit. On
the other hand, if the design based estimate of the risk is below the threshold
and the corresponding demographic risk is above we will not protect a unit
that may be at risk. These instances are, however, extremely rare. The first
type of error occurs for 30 units (0.04 % of the total), whereas the second
type of error occurs for 18 units (0.028% of the total). We conclude that



the design based method estimates reasonably well the individual risk of
disclosure when the key variables coincide with the constraint variables in
the calibration estimator.
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Figure 4: Risk using model based estimates and the demographic estimates
on key variables sex, age, region and marital status; HCS data. A logarithmic
scale is used. Units lying on the diagonal line share the same value of the
risk. The dashed lines indicate a possible value for the threshold.

In Figure 4 we plot the values of the risk based on the second set of key
variables. As in Figure 3 there is still high correlation between the two sets
of risk values, however higher variability than the previous case is shown. A
reason for this is that the new key variable introduced, marital status, has
not been included neither in the planning of the sampling design nor in the
definition of the calibration estimators. In particular, we observe that the
first type of error, as defined above, occurs in 190 units (0.29% of the total),



whereas the second type of error occurs in 404 (0.63% of the total) with an
increase of 0.24% and 0.57% respectively.

From the comparison of Figure 3 and Figure 4 and the considerations
made above, we argue that the design based risk estimation is a valid
methodology to evaluate the individual risk of disclosure. This is true also in
cases when there is no perfect coincidence between the set of variable used
to define the sampling design and the set of the key variables used to define
the disclosure problem.

5 Conclusion

Very frequently the decision to release a MF'R relies on measures of disclosure
risk based on the frequency of occurrences of sample uniques. In this paper
we show the limitation of such measure and argue on the need to relax
the hypothesis of exchangeability underneath this approach. To overcome
such limitations we outline an individual risk of disclosure based on negative
binomial distribution. This method provides a theoretical answer to the
need for risk estimation methods able to exploit all the available information
underlying the survey, with particular reference to the sampling design. The
proposed estimation method performs a direct extension to the population by
means of sampling weights and requires a very small computational burden.
In its application to the Italian HCS, this methodological approach has
proved to provide valid estimates of the individual risk even in those cases
where the set of the sampling design variables did not coincide with the set
of key variables.

Finally this individual approach is essential to formalise, in a flexible
way, the introduction of factors not depending on released data which may
influence the disclosure risk. This is the case of the quality of the key
variables, the size of the intruder data-base and any other source of noise
which can be different from unit to unit.

The flexibility, the validity and the simple implementation and use
through the software u-Argus show that such method has the potentiality to
solve the problems of practical survey data protection.
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